Nicotine metabolite ratio (3-hydroxycotinine/cotinine) in plasma and urine by different analytical methods and laboratories: implications for clinical implementation.
نویسندگان
چکیده
BACKGROUND The highly genetically variable enzyme CYP2A6 metabolizes nicotine to cotinine (COT) and COT to trans-3'-hydroxycotinine (3HC). The nicotine metabolite ratio (NMR, 3HC/COT) is commonly used as a biomarker of CYP2A6 enzymatic activity, rate of nicotine metabolism, and total nicotine clearance; NMR is associated with numerous smoking phenotypes, including smoking cessation. Our objective was to investigate the impact of different measurement methods, at different sites, on plasma and urinary NMR measures from ad libitum smokers. METHODS Plasma (n = 35) and urine (n = 35) samples were sent to eight different laboratories, which used similar and different methods of COT and 3HC measurements to derive the NMR. We used Bland-Altman analysis to assess agreement, and Pearson correlations to evaluate associations, between NMR measured by different methods. RESULTS Measures of plasma NMR were in strong agreement between methods according to Bland-Altman analysis (ratios, 0.82-1.16) and were highly correlated (all Pearson r > 0.96, P < 0.0001). Measures of urinary NMR were in relatively weaker agreement (ratios 0.62-1.71) and less strongly correlated (Pearson r values of 0.66-0.98, P < 0.0001) between different methods. Plasma and urinary COT and 3HC concentrations, while weaker than NMR, also showed good agreement in plasma, which was better than that in urine, as was observed for NMR. CONCLUSIONS Plasma is a very reliable biologic source for the determination of NMR, robust to differences in these analytical protocols or assessment site. IMPACT Together this indicates a reduced need for differential interpretation of plasma NMR results based on the approach used, allowing for direct comparison of different studies.
منابع مشابه
Variation in Trans-3′-Hydroxycotinine Glucuronidation Does Not Alter the Nicotine Metabolite Ratio or Nicotine Intake
BACKGROUND CYP2A6 metabolizes nicotine to its primary metabolite cotinine and also mediates the metabolism of cotinine to trans-3'-hydroxycotinine (3HC). The ratio of 3HC to cotinine (the "nicotine metabolite ratio", NMR) is an in vivo marker for the rate of CYP2A6 mediated nicotine metabolism, and total nicotine clearance, and has been associated with differences in numerous smoking behaviors....
متن کاملBiomonitoring of Urinary Cotinine Concentrations Associated with Plasma Levels of Nicotine Metabolites after Daily Cigarette Smoking in a Male Japanese Population
Human biomonitoring of plasma and urinary levels of nicotine, cotinine, and 3'-hydroxycotinine was conducted after daily cigarette smoking in a population of 92 male Japanese smokers with a mean age of 37 years who had smoked an average of 23 cigarettes per day for 16 years. Members of the population were genotyped for the nicotine-metabolizing enzyme cytochrome P450 2A6 (CYP2A6). The mean leve...
متن کاملUGT2B10 genotype influences nicotine glucuronidation, oxidation, and consumption.
BACKGROUND Tobacco exposure is routinely assessed by quantifying nicotine metabolites in plasma or urine. On average, 80% of nicotine undergoes C-oxidation to cotinine. However, interindividual variation in nicotine glucuronidation is substantial, and glucuronidation accounts for from 0% to 40% of total nicotine metabolism. We report here the effect of a polymorphism in a UDP-glucuronsyltransfe...
متن کاملCYP2A6 genotype, phenotype, and the use of nicotine metabolites as biomarkers during ad libitum smoking.
CYP2A6 inactivates nicotine to cotinine and cotinine to 3-hydroxycotinine. We investigated which of plasma nicotine and metabolites were most related to CYP2A6 genotype and smoking levels. We assessed demographic and smoking histories in 152 Caucasian ad libitum smokers, measured breath carbon monoxide (CO) levels, and determined plasma nicotine, cotinine, and 3-hydroxycotinine by high-performa...
متن کاملSimultaneous and sensitive measurement of anabasine, nicotine, and nicotine metabolites in human urine by liquid chromatography-tandem mass spectrometry.
BACKGROUND Determination of nicotine metabolism/pharmacokinetics provides a useful tool for estimating uptake of nicotine and tobacco-related toxicants, for understanding the pharmacologic effects of nicotine and nicotine addiction, and for optimizing nicotine dependency treatment. METHODS We developed a sensitive method for analysis of nicotine and five major nicotine metabolites, including ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2015